
Adventure AMA
February 12, 2021



Assignment Objectives

• Separating presentational logic from core logic
• Working with Java input/output
• Designing effective objects
• More work with JSON



Adventure Design

• Week 2: Your design will be plugged into a website
• State-based design

• Be able to advance the game one step at a time
• Avoid needing to store previous command

• A step of your game includes
• Accepting an input
• Changing the state in your engine, if applicable
• Providing some feedback to the user

• Optional in some cases



Adventure Design – Visualized 

Your Adventure Game Engine

"go North" Console
Input

currentRoom: Entrance

inventory: []

currentRoom: Lagoon

mode: Normal

"take sword"

inventory: [Sword]

"inspect sword"

mode: AnswerQuestion

"drop sword"

Console
Output

"You are in the Lagoon.
Items: Sword"

"The sword asks you: 'Are you powerful 
enough to wield me?'"

"The sword impatiently quips: 'It was a 
yes or no question…'"

"yes"

mode: Normal

"The sword seems satisfied and jumps 
into your scabbard."



New Rubric Items

• Testing: different test files for source files
• Object Decomposition

• Member variables & avoiding duplicate storage
• Placement of member functions
• What methods should be public?

• A Connect-Four method that sets a slot to a player color
• A Connect-Four method that takes a column index and "drops" a player token



Customizability

• Concrete requirements:
• JSON must be 10+ rooms
• Layout mustn't be a straight line; there should be some different paths you 

can take
• Recommended:

• Have fun with the theme!
• Where is the sample JSON?

• ./src/main/resources/siebel.json
• Can I extend the command keywords / output text?

• Yes, but be sensible
• Retain given command words and add new ones



Testing Adventure

• Avoid redirecting streams
• Consider creating methods that can take in strings

• Tests should reflect what the player can interact with
• Players don't give their commands as separated lists;

They give them as fully typed out lines



Code Review Digest – Return Values

• Return values should be optimally useful for any potential caller
• Don't try to assume how the user wants their data
• Don't assume the user will understand what an arbitrary value means

public String generateValues() {
// get values in "list" variable
return String.join(",", list);

}

public int determineWinner() {
if (checkRedWins()) {

return 0;
} else if (checkYellowWins()) {

return 1;
}

return -1;
}

public List<String> generateValues() {
// get values in "list" variable
return values;

}



Code Review Digest – Over-modularizing

• Short functions are not always modular!
• Masking most of the functionality behind one function doesn't make your 

code modular; see below

public Evaluation evaluate() {
if (Math.abs(numO - numX) >= 2) {

return Evaluation.UnreachableState;
}
if (getWinner() == 'X') {

return Evaluation.Xwins;
} else if (getWinner() == 'O') {

return Evaluation.Owins;
} else if (getWinner() == 'R') {

return Evaluation.UnreachableState;
}
return Evaluation.NoWinner;

}



Code Review Digest – Over-modularizing 
(cont.)
• What to look for when making code more modular

• Small code blocks that perform a distinct function
• Any time a method name includes "and", i.e. has too many responsibilities
• Repeated sections / sections that share similarity

• What to avoid
• Copying the code as-is into "sectioning" functions
• Sacrificing ease-of-understanding or data-redundancy



Code Review Digest – Testing Collection 
Equality
• Checking if two collections have the same number of elements in 

tests is insufficient.
• If order does matter (checking that the collections are an exact

match)
• Use assertEquals as you normally do; assertArrayEquals for arrays

• If order doesn't matter (checking that they contain the same 
elements)

• Easy trick: use Collections.sort() on both expected and actual, then do the 
same as above



Visit the pinned thread on Campuswire to ask your questions
If you see a question you'd like to hear the answer to, upvote it

AMA


	Adventure AMA
	Assignment Objectives
	Adventure Design
	Adventure Design – Visualized 
	New Rubric Items
	Customizability
	Testing Adventure
	Code Review Digest – Return Values
	Code Review Digest – Over-modularizing
	Code Review Digest – Over-modularizing (cont.)
	Code Review Digest – Testing Collection Equality
	Slide Number 12

